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Abstract

Eccentric rotor motion induces an unbalanced magnetic pull between the rotor and stator of cage
induction motors. Recently, a linear parametric model of this eccentricity force due to the arbitrary rotor
motion was presented. The purpose of this study is to combine this electromagnetic force model with a
simple mechanical rotor model, and further, to demonstrate the rotordynamic response induced by this
electromechanical interaction. An electromechanical rotor model is derived on the basis of the Jeffcott
rotor with two additional variables for the harmonic currents of the rotor cage. Applying this model, the
rotordynamic effects of electromechanical interaction were studied. Three induction motors were used in
the numerical examples. The electromechanical parameters of these motors were estimated from the
numerical simulations carried out separately. The results obtained show that the electromechanical
interaction may decrease the natural frequencies of the rotor, induce additional damping or cause
rotordynamic instability. These interaction effects are most significant in motors operating at or near the
first bending critical speed. Excluding the potential rotordynamic instability, the numerical results indicate
that the electromechanical interaction reduces effectively the unbalance response close to the first bending
critical speed.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.

jsv.2004.07.007

ding author. ABB Oy, Electrical Machines, P.O. Box 186, FIN-00381 Helsinki, Finland. Tel.:

488, fax: +358 10 22 22141.

ress: timo.holopainen@fi.abb.com (T.P. Holopainen).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

Nomenclature

A system matrix
a unbalance vector
ap�1; apþ1 force model parameters
B̂p amplitude for the fundamental compo-

nent of the magnetic flux density
B̂h effective amplitude for the high-order

components of the magnetic flux density
cp�1; cpþ1 force model parameters
d external viscous damping coefficient
dr outer diameter of the rotor
erms

p�1; erms
F error measures for cage-current com-
ponents and electromagnetic force

F excitation force
Fe electromagnetic force
GF ; Gp�1 frequency response functions
îp�1; îpþ1 space-vector variables for cage-current

components
k shaft stiffness coefficient
ke electromagnetic force parameter
kp�1; kpþ1 coupling factors due to the leakage

flux and saturation
L self-inductance of one rotor-cage mesh
Lp�1; Lpþ1 rotor-cage inductances for cage-cur-

rent components
le equivalent core length
m mass of rotor core
Np number of points
Ns number of samples
P output power
p number of pole-pairs of the motor
p

c
centre-point position of the rotor

q
p�1

; q
pþ1

transformed variables related to the
cage-current components

q state vector
Rp�1; Rpþ1 rotor-cage resistances for cage-cur-

rent components
Ro speed ratio
s slip of the rotor with respect to the

fundamental component of the stator
field

Te electromagnetic torque
Ts length of sample
T sim length of simulation period
t time
U supply voltage
ui eigenvector i

a ratio between the apparent electromag-
netic stiffness and the shaft stiffness

b direction of the pulse at its starting
instant

g parameter associated with the slip and
number of pole-pairs

de equivalent air-gap length including slot-
ting

di decay constant of eigenvalue i

D length of the pulse
� relative amplitude of the pulse
z factor for external viscous damping
Wb0 phase angle for the space vector of the

magnetic flux density
li eigenvalue i

m0 permeability of free space
tp�1; tpþ1 time constants for cage-current com-

ponents
o angular frequency
on natural bending frequency of the rotor
os supply frequency
op angular velocity of the pulse
Om rotational speed of rotor
x complex number
x� complex conjugate of x

x̂ space vector
~x dimensionless equivalent to x

x
�� �� magnitude of complex number x
�x discrete Fourier transform of time se-

quence of x

xr;xs complex number in rotor or stator
reference frame

x;t differentiation of x with respect to time
xrat value of x in rated operation conditions
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1. Introduction

Electromagnetic fields in the air gap of an electric machine produce electromagnetic forces
between the rotor and stator. The total force exerted on the rotor due to the eccentric rotor
position is called the unbalanced magnetic pull. This eccentricity force is directed roughly over the
shortest air gap. At low frequencies, the vibration amplitudes of flexural modes may be large
enough to couple the electromagnetic system with the mechanical one. This electromechanical
interaction changes the vibration characteristics of the motor; for example, it may decrease the
critical speeds of the machine, induce additional damping or cause rotordynamic instability. Thus,
to control the vibrations and rotordynamic behaviour of electric machines, it is important to
predict the effects of electromechanical interaction between the rotor and stator.
The electromagnetic field in the air gap encircling the rotor can be divided into the spatial

harmonic components. The main and strongest component is the fundamental component, which
is required for torque generation. The order of this component is the same as the number of pole-
pairs of the machine, p. An eccentric rotor position together with the fundamental field
component produces two additional field components in particular. The order of these
components, p � 1; differs with one from the order of the fundamental component. The main
part of the eccentricity force is produced by these additional field components together with the
fundamental field. This description is complicated to some extent due to the equalising currents of
the rotor cage. While these harmonic currents are induced by the eccentric rotor position together
with the fundamental field, they themselves can induce the same field components and decrease
the total eccentricity force exerted on the rotor.
Freise and Jordan [1] derived the analytical equations for the unbalanced magnetic pull in static

and dynamic eccentricity. Further, they introduced the coefficients for the force reduction induced
by the equalising currents of the rotor cage. Finally, they presented a simple formula to determine
the first critical speed starting from the negative spring coefficient induced by the electromagnetic
field. Früchtenicht et al. [2] derived an analytic model for the unbalanced magnetic pull when the
rotor is in a circular whirling motion with an arbitrary whirling frequency. They applied the
assumption that the currents and fluxes vary sinusoidally in time. Using this model they
determined the additional stiffness and damping coefficients induced by the electromagnetic fields,
and developed an electromechanical model to study the effects on the rotordynamic stability.
Belmans et al. [3] investigated analytically and experimentally the flexible shaft induction motors.
Their calculation model resembled that of Früchtenicht et al. [2], but they focused on two-pole
machines. They concluded that a potential reason for the rotordynamic instability results from the
electromagnetic damping coefficient which may be negative. The approach of Skubov and
Shumakovich [4] enabled an arbitrary motion of the rotor. They applied the averaging method
together with the Lagrange formulation for the analytical derivation of the equations. They
discovered that the tangential component of the electromagnetic total force might be the reason
for the instability. The references given above, as well as most of the former studies, apply
analytical approaches to investigate the electromechanical interaction. However, the saturation of
magnetic materials, and stator and rotor slottings, may be difficult to model by analytical means.
Arkkio et al. [5] studied the electromagnetic force exerted on the rotor of a cage induction

motor. They determined numerically the unbalanced magnetic pull in circular whirling motion as
a function of whirling frequency. They validated the numerical results with the experimental
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measurements using a rigid rotor and two magnetic bearings to generate the controlled whirling
motion. Starting from the frequency response function, Arkkio et al. [5] identified a parametric
model for the total electromagnetic force. However, the parameters of this model are not clearly
related to the analytical equations derived previously or to the machine characteristics. To meet
this need, Holopainen et al. [6] derived the required analytical equations for the unbalanced
magnetic pull due to the arbitrary rotor motion in transient operation. In this connection, they
introduced separate variables for the essential harmonics of the rotor cage currents, which enabled
the assumption of arbitrary rotor motion.
Previous research on this issue has not been conclusive, in part because it has generally been

based on the stiffness and damping coefficients induced by the electromagnetic fields, when an
adequate force model requires independent variables for the harmonic cage currents. The main
purpose of the present investigation was to derive an electromechanical rotor model for cage
induction motors with physical parameters, which can be estimated from numerical simulation
results. In addition, the second aim was to present the main rotordynamic consequences induced
by the electromechanical interaction.
The approach of this study is purely theoretical. Numerical simulation models are applied to

estimate the electromagnetic parameters of the example motors. Otherwise, only the analytical
derivations and simple mathematical models are used to reveal the essential behaviour of the
electromechanical interaction. Further, the aim is to find the general form of the equations. Thus,
the mechanical model was kept very simple and the mechanical damping was assumed to be
viscous in character. Moreover, the rotor and stator axes were assumed to remain parallel during
the rotor motions, which simplified the analyses.
The present study was limited to cage induction motors without parallel paths in the stator

windings. These parallel paths are assumed to induce additional electromagnetic forces by
enabling circulatory currents in the stator winding resembling the effects of rotor cage currents.
Further, the homopolar flux, which may be associated with the eccentricity, and may have a
central effect on the rotordynamics of two-pole motors [3], was neglected. Moreover, the
parametric force model applied in this study included only two low-order components of the
electromagnetic fields in the air gap. There are reasons to remember that there are high-order
components contributing to the total force. An example of the simulation results revealing the
effect of high-order components on the unbalanced magnetic pull is shown in Ref. [5].
2. Methods

2.1. Mechanical rotor model

The mechanical behaviour of the system was modelled by the most simple rotor model
consisting of two degrees-of-freedom describing the deflection of the shaft. This model is
commonly called a Laval shaft or Jeffcott rotor. The rotor core was modelled as a rigid cylinder
located at the middle of a uniform, massless, flexible shaft. The shaft was simply supported at its
ends by the rigid frictionless bearings. The gravitational force exerted on the rotor was neglected.
The mechanical damping was assumed external and viscous in character. In most cases, this
mechanical damping was neglected to emphasise the effects of electromagnetic forces. The
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cylindrical rotor was assumed to move only in the transversal plane or, more precisely, in the xy -
plane in the stator reference frame. The origin of this frame was located in the centre of the stator
bore and it was assumed to coincide with the rotational axis of the bearings. The position of the
rotor-core centre was defined by a complex variable ps

c
; where the bar under the symbol denotes

the complex quantity and the superscript s refers to the stator reference frame. The equations of
motion of this simple rotor can be written using the complex formulation [7]

mps

c;tt
þ dps

c;t
þ kps

c
¼ FsðtÞ; (1)

where m is the mass of the rotor core, d the external viscous damping, k the shaft stiffness, Fs the
excitation force; the time derivative is denoted by subscript t after a comma.
The equations were mainly derived in the rotor reference frame. This frame is rotating with the

same angular velocity as the rotor. The origin of this rotor reference frame is fixed to the origin of
the stator reference frame, although the centre point of the rotor may travel along an eccentric
path. The Jeffcott rotor equation with unbalance force excitation can be written in the rotor
reference frame with a constant rotational speed [7]

mpr

c;tt
þ d þ j2mOmð Þpr

c;t
þ k þ jdOm � mO2

m

� �
pr

c
¼ O2

mm a; (2)

where Om is the rotational speed of the rotor and a the unbalance vector; superscript r refers to the
rotor reference frame.
2.2. Simulation of electromagnetic system

The simulation of the electromagnetic system was based on the time-stepping, finite-element
analysis. The details of the method are presented by Arkkio [8]. The rotor and stator axes were
assumed perpendicular to the xy-plane, and the magnetic field in the core region of the motor was
assumed two-dimensional, parallel to the xy-plane. End winding impedances were used in circuit
equations of the windings to model approximately the end effects. The laminated iron core was
treated mostly as a non-conducting, magnetically non-linear medium, and the non-linearity was
modelled by a single-valued magnetisation curve. The motion of the rotor was obtained by
moving the centre point of the rigid rotor and changing the finite-element mesh in the air gap. In
addition, the rotor was rotated at the mechanical angular velocity.
The field and circuit equations were discretized and solved together. First- or second-order,

isoparametric, triangular elements were used for the electromagnetic fields. The initial state for the
simulation was determined employing the time-harmonic analysis. The time-dependence of the
variables was modelled by the Crank–Nicholson method. The magnetic field and the cage currents
were obtained directly in the solution of equations. The method presented by Coulomb [9] was
used for computing the electromagnetic force.
2.3. Electromagnetic force model

Our starting point was the parametric force model presented in detail by Holopainen et al. [6].
Here, only the main equations and parameters are introduced. The space vector formulation [10]
was applied to present the distributed variables as the harmonic cage-current components and the
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voltages of the stator windings. The parametric force model, including two differential equations
for the cage-current harmonics, and one equation for the total electromagnetic force, can be
written in the rotor reference frame [6]

î
r

p�1;t þ t�1
p�1 î

r

p�1 þ ap�1 ðpr

c;t
Þ
�
þ jsosðp

r

c
Þ
�

� �
ej sostþWb0ð Þ ¼ 0;

î
r

pþ1;t þ t�1
pþ1 î

r

pþ1 þ apþ1 pr

c;t
þ jsosp

r

c

� �
ej sostþWb0ð Þ ¼ 0;

Fr
eðtÞ ¼ kep

r

c
þ cp�1ðî

r

p�1Þ
�ej sostþWb0ð Þ þ cpþ1 î

r

pþ1e
�j sostþWb0ð Þ; ð3Þ

where î
r

p�1 and î
r

pþ1 are the space vectors of the harmonic components p � 1 of the cage currents,
the circumflex above a symbol refers to the space-vector character, p is the number of pole pairs,
the asterix ð�Þ denotes the complex conjugate, os is the electrical supply frequency, s is the slip of
the rotor with respect to the fundamental component of the stator field, Wb0 is the phase angle of
the magnetic-flux-density space-vector at t ¼ 0; Fr

e is the total electromagnetic force exerted on the
rotor, and finally ap�1; tp�1; cp�1 and ke are the system parameters. In this paper, these parameters
are estimated from the simulation results. To reveal the relation of these parameters to the
machine and operation characteristics, the analytical formulas can be written using several
simplifying assumptions [6]

ap�1 ¼
Lkp�1

2m0Lp�1
B̂p; cp�1 ¼

pdrlekp�1

4de

B̂p;

ke ¼
pdrle

4m0de

B̂
2

p þ B̂
2

h

� �
; tp�1 ¼

Lp�1

Rp�1
;

(4)

where m0 is the permeability of air, dr the outer diameter of the rotor core, le the equivalent core
length, de the equivalent air-gap length including slotting, L the self-inductance of one mesh of the
rotor cage, kp�1 the coupling factors due to the leakage flux and saturation, tp�1; Rp�1; and Lp�1

the time constants, the resistances, and the total inductances of the rotor cage determined
separately for the harmonic components p � 1; respectively, B̂p the amplitude of the fundamental
component of the magnetic flux density in the air gap, and B̂h the effective amplitude of all the
high-order harmonics [6]. In steady-state operation B̂p and B̂h and, thus, the analytical parameters
of Eq. (4) are constant.
2.4. Parameter estimation of electromagnetic force model

The parameters of the electromagnetic force model, ap�1; tp�1; cp�1 and ke; were estimated
from the frequency response function (FRF). The system was excited with a short impulse
and the response was simulated numerically. The applied method is closely related to the
experimental methods used to identify the vibration characteristics of a system [11]. The
approach used in this study is presented in detail by Holopainen et al. [12]. The excitation is
produced by moving the rotor from its concentric position for a short period of time. The induced
cage-current harmonics and the electromagnetic total force are calculated in the time domain.
Using spectral analysis techniques, the FRF between these responses and excitation are
determined. The discrete FRF between the electromagnetic force and rotor motion is obtained
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from the formula

GF joið Þ ¼
�F

r

e joið Þ

�pr

c
joið Þ

; oi ¼ 2pi=Ts; i ¼ 0;�1;�2; . . . ; (5)

where �Fe and �p
c
are the discrete Fourier transforms of the electromagnetic force and rotor

displacement signals, respectively. The length of the sample Ts and the total number of the data
points determine the frequency resolution. The parameters of the electromagnetic force model
were estimated in two phases from the simulated FRFs using a curve-fitting procedure, which was
based on the least-squares fit and on the iterative search of the denominator terms [12].
The covered frequency range depends on the length and type of the excitation pulse [11]. In

previous studies [12–14], the rotor was moved in the radial direction in the stator reference frame. In
this study, we applied a rotating excitation pulse in order to control better the excitation frequency
range, and thus, excite more effectively the required system modes. The type of the pulse was

ps

c
ðtÞ ¼

�de

2
1� cos

2p t � t1ð Þ

D

� �
ej op t�t1ð Þþbf g; t1otot1 þ D;

0; otherwise;

8<
: (6)

where � is the relative pulse amplitude, t1 the starting time of the pulse, D the length of the pulse, op

the angular velocity of the pulse, and b the direction of the pulse at its starting instant.
The two-pole induction motors, differing from the motors with more poles, may have in a

whirling motion a strong unsynchronous force component. For example, the static eccentricity of
the rotor induces this force component at twice the supply frequency in the stator reference frame.
The origin of this force component is the magnetic field components induced by the stator slotting
together with the eccentricity field components p � 1: This additional force component makes the
parameter estimation more difficult, because the system parameters are time-dependent. An
attractive remedy for this is the averaging method [11]. In this method, a set of FRFs obtained by
different test parameters is averaged. In the two-pole machines, the spatial wavelength of the
disturbing field producing the unsynchronous force component is 2p: Thus, in this study, a set of
samples (=time-histories) was generated using the evenly distributed starting direction of the
pulse. All the other test parameters were kept equal. The formula for the pulse direction in the
sample i was

bi ¼
1

2

2p
p

i � 1

Ns

; i ¼ 1; 2; . . . ;Ns; (7)

where Ns is the total number of samples.

2.5. Electromechanical rotor model

The differential equations of Eq. (3) include the time-dependent multiplier ejsost: To get rid of
this multiplier, each of the space-vector variables is transformed using the formulas

qr
p�1

¼ ðî
r

p�1Þ
nej sostþWb0ð Þ;

qr
pþ1

¼ î
r

pþ1e
�j sostþWb0ð Þ:

(8)
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These new variables are related to the respective harmonic components of cage currents, but
they are not space-vectors. Substituting these new variables into Eq. (3) yields a set of equations
without explicit time-dependency

qr

p�1;t
þ t�1

p�1 � jsos

� �
qr

p�1
þ ap�1 pr

c;t
� jsosp

r

c

� �
¼ 0;

qr

pþ1;t
þ t�1

pþ1 þ jsos

� �
qr

pþ1
þ apþ1 pr

c;t
þ jsosp

r

c

� �
¼ 0;

Fr
eðtÞ ¼ kep

r

c
þ cp�1q

r

p�1
þ cpþ1q

r

pþ1
: ð9Þ

The electromechanical rotor equations are obtained by combining the mechanical equations of
motion (2) with the electromagnetic force model of Eq. (9)

mpr

c;tt
þ d þ j2mOmð Þpr

c;t
þ k � ke þ jdOm � mO2

m

� �
pr

c
� cp�1q

r

p�1
� cpþ1q

r

pþ1
¼ O2

mm a;

qr

p�1;t
þ t�1

p�1 � jsos

� �
qr

p�1
þ ap�1 pr

c;t
� jsosp

r

c

� �
¼ 0;

qr

pþ1;t
þ t�1

pþ1 þ jsos

� �
qr

pþ1
þ apþ1 pr

c;t
þ jsosp

r

c

� �
¼ 0: ð10Þ
2.6. Non-dimensional rotor model

To minimize the number of parameters and emphasise the essential behaviour of the system, the
electromechanical rotor model of (10) was transformed into a non-dimensional form using the
dimensionless variables and time

~pr

c
¼

pr
c

de

; ~qr

p�1
¼

cp�1

kde

qr

p�1
; ~t ¼ ont; (11)

where the tilde above a symbol refers to a dimensionless quantity, and on ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
is the natural

bending frequency of the rotor. Substituting the new variables into Eq. (10) yields

~pr

c;~t~t
þ 2 zþ jRoð Þ~pr

c;~t
þ 1� aþ j2zRo � R2

o

� �
~pr

c
� ~qr

p�1
� ~qr

pþ1
¼ R2

o ~a;

~qr

p�1;~t
þ ~t�1

p�1 � jgRo

� �
~qr

p�1
þ a~cp�1 ~pr

c;~t
� jgRo ~p

r

c

� �
¼ 0;

~qr

pþ1;~t
þ ~t�1

pþ1 þ jgRo

� �
~qr

pþ1
þ a~cpþ1 ~pr

c;~t
þ jgRo ~p

r

c

� �
¼ 0; ð12Þ

where the new dimensionless parameters are

Ro ¼
Om

on

; a ¼
ke

k
; ~cp�1 ¼

ap�1cp�1

ke

; ~tp�1 ¼ ontp�1;

z ¼
d

2mon

; ~a ¼
a

de

; g ¼
sos

Om

¼
ps

1� s
; ð13Þ

where Ro is the speed ratio, a the ratio between the apparent electromagnetic stiffness and the
shaft stiffness, z the factor for external viscous damping, and g a shorthand notation associated
with the slip and the number of pole-pairs. Eq. (12) is suitable for motors with two or more



ARTICLE IN PRESS

T.P. Holopainen et al. / Journal of Sound and Vibration 284 (2005) 733–755 741
pole-pairs ðpX2Þ: When the number of pole-pairs is one, and the homopolar flux is neglected, the
differential equations are reduced into the form

~pr

c;~t~t
þ 2 zþ jRoð Þ~pr

c;~t
þ 1� aþ j2zRo � R2

o

� �
~pr

c
� ~qr

pþ1
¼ R2

o ~a;

~qr

pþ1;~t
þ ~t�1

pþ1 þ jgRo

� �
~qr

pþ1
þ acpþ1 ~pr

c;~t
þ jgRo ~p

r

c

� �
¼ 0:

(14)

Eq. (14) is clearly a simplification of the actual electromechanical behaviour of two-pole
motors, because the homopolar flux, corresponding to the p � 1 term, may affect the
rotordynamics and stability of the system significantly [3].

2.7. Rotordynamic stability

The stability of a linear system is determined by the eigenvalues of this system. Briefly, the
system is stable, if the real parts of all the eigenvalues are positive [15]. To determine the
eigenvalues, the system equations, i.e. the homogeneous part of Eq. (12), were first transformed
into the form of state equations [15]

~qr
;~t ¼

~A
r
~qr (15)

with the dimensionless state vector

~qr
¼ ~pr

c
~pr

c;~t
~qr

p�1
~qr

pþ1

n oT

(16)

and the system coefficient matrix

~A
r
¼

0 1 0 0

� 1� aþ j2zRo � R2
o

� �
�2 zþ jRoð Þ 1 1

ja~cp�1gRo �a~cp�1 �~t�1
p�1 þ jgRo 0

�ja~cpþ1gRo �a~cpþ1 0 �~t�1
pþ1 � jgRo

2
66664

3
77775: (17)

The eigenvalue problem is

~A
r
� ~l

r
I

h i
~ur ¼ 0; (18)

where I is the identity matrix. The solution consists of four eigenvalues ~l
r

i and associated
eigenvectors ~ur

i ði ¼ 1; 2; 3; 4Þ: These eigenvalues can be expressed in the general form

~l
r

i ¼ �~di þ j ~or
i ; (19)

where ~di is the dimensionless decay constant and ~or
i is the non-dimensional frequency of the

eigenvalue number i in the rotor reference frame. The dimensional eigenvalues are obtained from
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the formula

lr
i ¼ on

~l
r

i ¼ �~dion þ j ~or
ion ¼ �di þ jor

i : (20)

The eigenvalues of Eqs. (19) and (20) are given in the rotor reference frame. In the stator
reference frame, the frequencies are

~os
i ¼ ~or

i þ Ro; os
i ¼ or

i þ Om: (21)

Irrespective of the reference frame, the linear system is asymptotically stable, if all the
eigenvalues have positive decay constant. Similar stability considerations can be carried out for
the two-pole motors starting from Eq. (14).

2.8. Unbalance response

Usually, the most important excitation force of the system is the mass unbalance. When the
rotor is rotating at constant angular velocity and the stability conditions are fulfilled, the
unbalance excites a synchronous whirl of the rotor. This means that the unbalance and response
vectors are rotating with the same angular velocity as the rotor.
Substituting this steady-state assumption in the rotor reference frame, i.e., ~pr

c;~t

 ~qr

p�1;~t

 0; into

Eq. (12) yields

1� aþ j2zRo � R2
o

� �
~pr

c
� ~qr

p�1
� ~qr

pþ1
¼ R2

o ~a;

~t�1
p�1 � jgRo

� �
~qr

p�1
� ja~cp�1gRo ~p

r

c
¼ 0;

~t�1
pþ1 þ jgRo

� �
~qr

pþ1
þ ja~cpþ1gRo ~p

r

c
¼ 0: ð22Þ

The steady-state response of the cage-current harmonics, i.e. ~qr

p�1
and ~qr

pþ1
; can be solved from

the two last equations. Substituting these into the first equation of Eq. (22) gives the amplification
factor due to the unbalance

~pr

c

~a
¼

R2
o

1� aþ j2zRo � R2
o �

ja~cp�1gRo~tp�1

1� jgRo~tp�1
þ
ja~cpþ1gRo~tpþ1

1þ jgRo~tpþ1

: (23)

3. Results

3.1. Example motors

The developed electromechanical rotor model was applied for three induction motors. The
smallest one was a 15 kW four-pole motor investigated previously with numerical and
experimental methods [5,12–14]. The second one was a large 2.6MW two-pole motor with rated
operation above its first bending critical speed. The third one was a large 4.25MW four-pole
motor with subcritical rated operation. The main parameters of these motors are given in Table 1.
The effective mass and stiffness of the rotors were approximated starting from the design data of
the first natural bending frequency together with the total mass of the rotor and the structural
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arrangements. Fig. 1 shows, as an example, the cross-section of the 2.6MW motor and a typical
magnetic flux distribution during the operation.

3.2. Force model parameters

The numerical model of the 15 kW motor was generated using the second-order triangular
elements, and a typical finite-element mesh contained about 8700 nodes. The larger motors were
generated with first-order elements, while a typical element mesh of the 2.6MW motor contained
about 3500 nodes, and a mesh of the 4.2 MW motor about 4700 nodes. The parameters of the
electromagnetic force model were estimated from the calculated impulse response data. The length
of the simulation samples was systematically T sim ¼ 2:0 s: The number of time steps per one
period of supply voltage was chosen to be 400. This yielded the time step length of 0.05ms for the
15 kW motor at rated operation, and about 0.042 ms for the large machines.
The relative amplitude of the pulse was systematically � ¼ 0:2; and the length D ¼ 0:04 s: The

starting time of the pulse was t1 ¼ 0:067 s for the large machines, and t1 ¼ 0:08 s for the 15 kW
motor, in order to attenuate all initial transients of the system. For the 15 kW and 4.2 MW
motors, the pulse was rotated with the angular velocity of the rotor, i.e., op ¼ Om; and, for the 2.6
MW motor, with the angular velocity of the stator field, op ¼ os: In the averaging, the number of
samples for the 2.6 MW motor was chosen to be four, Ns ¼ 4; and, for the other machines,
Ns ¼ 1: With these pulse parameters, the theoretical continuous excitation range was about
�50 Hzof exco50 Hz in the rotor reference frame.
The time domain data describing the excitation and response were transformed into the

frequency domain. To obtain a reasonable calculation time, the number of points in the discrete
Fourier transform was chosen to be systematically n ¼ 214: To obtain a reasonable spectral
resolution without extending the simulation time excessively, the sample size was lengthened by
padding zeros at the end of the simulated data [11]. In addition, the initial phase before the pulse
was systematically cut away before the transformation. To eliminate potential interpolation error,
the sample time for the discrete Fourier transform was chosen to be a multiple of the simulation
time-step length. For the 15kW motor, it was 0.65ms, and for the other motors, it was about 0.67
ms. This led to the total length of the sample Ts � 11 s; and to the spectral resolution about 0.1Hz.
The frequency response functions were generated without any additional numerical filtering.
The force model parameters were estimated from the frequency response functions using the

curve-fitting procedure. All the data points with the absolute value of whirling frequency below
f w

�� ��o25 Hz in the rotor reference frame were used for the curve fitting. The error measure for the
parametric curves was the root mean square compared to the original FRF of each case. The
applied formulas for the relative error for harmonic currents and total force were

erms
p�1 ¼

1

ap�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Np

XNp

i¼1

Gfit
p�1 joið Þ � Gfrf

p�1 joið Þ

��� ���2
vuut ;

erms
F ¼

1

k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Np

XNp

i¼1

Gfit
F joið Þ � Gfrf

F joið Þ
�� ��2

vuut ; ð24Þ

where oij jp2p 25 Hz:
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Fig. 1. Half of the cross-sectional geometry of the 2.6MW motor and a typical flux distribution during operation.

Table 1

Main parameters of the example motors

Parameter Motor

15 kW 2.6MW 4.2MW

Number of poles 4 2 4

Number of phases 3 3 3

Number of parallel paths 1 1 1

Outer diameter of stator core 235 860 1100mm

Inner diameter of stator core 145 480 710mm

Radial air-gap length 0.45 6.0 4.5mm

Number of stator slots 36 48 48

Number of rotor slots 34 40 58

Skew of rotor slots 0 0 0

Connection Delta Star Star

Rated voltage 380 4000 13200V

Rated frequency 50 60 60Hz

Rated current 28 417 217A

Rated power 15 2600 4250 kW

Rotor effective mass 30 1100 2500 kg

Rotor effective stiffness 150 48 150MN/m

Natural bending frequency 356 33.3 39.0Hz

Rated slip 0.032 0.0038 0.0042

T.P. Holopainen et al. / Journal of Sound and Vibration 284 (2005) 733–755744
Fig. 2 shows the calculated FRF between the force and whirling motion for the 15 kW motor.
To illustrate the complex FRF, it is divided into the real-valued radial and tangential components.
In addition, Fig. 2 shows the parametric FRF obtained by the curve-fitting procedure. The
estimated parameter values for each motor are given in Table 2. The parameters, estimated in this
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study for the 15 kW motor with a rotating excitation, are almost equivalent to the parameters
estimated with a non-rotating excitation [12].

3.3. Rated operation

The dimensionless parameters of the corresponding electromechanical rotor models were
determined using the data of Tables 1 and 2 together with Eq. (13). Table 3 shows the parameters
of the example motors in the rated operation. The system equations were generated using these
parameters and neglecting the external viscous damping. The eigenproblem of each motor was
solved leading to three or four eigenvalues and associated eigenvectors. The imaginary part of an
eigenvalue gives the dimensionless eigenfrequency, and the real part the opposite number of the
dimensionless decay constant. Table 4 shows the eigenvalues in the stator reference frame. Two of
the modes are associated with the eccentricity harmonics of the rotor cage currents, and two with
the forward and backward whirling modes. However, all the modes have electromagnetic and
mechanical contributions. As can be seen in Table 4, the electromechanical interaction decreases
the eigenfrequencies of the whirling modes about 2.0%. The dimensionless decay constant of each
of the modes and motors is small, varying between –0.03% and 0.64%. All the eigenvalues decay
except the forward whirling mode of the 2.6MW motor.

3.4. Effect of rotational speed

The parameters of the electromagnetic force model are dependent mainly on the rotational
speed, supply voltage and loading torque. Further, the electromagnetic system is non-linear with
respect to these operation parameters. Thus, to avoid excessive calculation, an upper limit curve
was defined for the main operation parameters (Fig. 3). Below the rated operation point, this
curve is a consequence of the saturation, which limits the amplitude of the magnetic flux density.
Above the rated operation point, the available supply voltage is the limiting factor. A similar
curve represents a typical control strategy when a frequency converter is used to control the
operation parameters of an induction motor. Tables 5 and 6 show the dimensionless force
parameters for the 2.6 and 4.2MW motors, respectively, in several operation points on the upper
limit curve. According to Tables 5 and 6, the parameters are relatively constant, when the
rotational speed is lower than the rated speed. This follows from the fact that the constant torque
operation corresponds to the constant flux operation [6]. When the rotational speed is higher than
the rated speed, the change in the parameter values is more evident. These changes mean that the
electromagnetic force induced by the eccentric motion is, in that case, lower.
The parameter values of the rated operation point were chosen to represent the typical

parameters at variable operation speeds. Fig. 4 shows the dimensionless eigenvalues and decay
constants of the 2.6MW motor. Fig. 5 shows the corresponding curves for the 4.2MW motor.
Here, it can be mentioned that this four-pole motor is designed for the subcritical operation range.
Figs. 4 and 5 show that two of the modes, the forward whirling mode and the electromagnetic
mode p þ 1; couple strongly together close to the critical speed. The same figures show that the
backward whirling mode does not couple with the electromagnetic modes. Actually, the rotation
direction of the backward whirling mode is the reverse of the direction of the other modes.
Further, Figs. 4 and 5 show that one of the coupled modes is unstable when the rotation speed is
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Fig. 2. FRF of the 15 kW motor in the rated operation as a function of whirling frequency in the rotor reference frame.

The radial direction is defined in the direction of the shortest air gap and the tangential component perpendicular to the

radial one.

Table 2

Estimated force parameters of the example motors in the rated operation conditions

Motor Parameter Relative error

ap�1 apþ1 tp�1 tpþ1 k0 cp�1 cpþ1 erms
p�1 erms

pþ1 erms
F

(kA/m) (kA/m) (s) (s) (MN/m) (N/A) (N/A) (%) (%) (%)

15 kW 367 353 0.229 0.079 16.8 10.7 19.5 12.3 4.7 2.4

2.6MW — 223 — 0.774 5.34 — 14.8 — 1.5 1.0

4.2MW 302 274 1.151 0.807 20.1 8.40 45.1 6.4 1.8 1.4

Table 3

Dimensionless parameters of the electromechanical rotor model for the example motors

Motor Parameter

Ro a ~cp�1 ~cpþ1 ~tp�1 ~tpþ1 g

15 kW 0.070 0.112 0.234 0.409 511 176 0.06610

2.6MW 1.800 0.111 — 0.623 — 162 0.00379

4.2MW 0.766 0.134 0.126 0.616 240 169 0.00844

T.P. Holopainen et al. / Journal of Sound and Vibration 284 (2005) 733–755746
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Table 4

Dimensionless eigenvalues of the example motors at rated operation speed in the stator reference frame

Motor Eigenvalue

bw fw p � 1 p þ 1

15 kW �0:15 10�3 � j0:980 �0:17 10�3 þ j0:980 �1:90 10�3 þ j0:075 �5:41 10�3 þ j0:065
2.6MW �0:08 10�3 � j0:979 þ0:27 10�3 þ j0:979 — �6:36 10�3 þ j1:793
4.2MW �0:16 10�3 � j0:983 �1:13 �10�3 þ j0:983 �3:97 10�3 þ j0:772 �4:66 10�3 þ j0:760

The corresponding eigenmodes are the backward whirling (bw), the forward whirling (fw), and the cage-current

harmonics- p � 1:
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higher than a certain limit close to the critical speed. This unstable mode is a combination of the
forward whirling and the p þ 1 mode.

3.5. Electromechanical instability

As can be seen in Figs. 4 and 5 , the electromechanical interaction may destabilise one of the
modes, and thus, the whole rotordynamic system. The stability is achieved by including the non-
rotating damping into the model. The minimum damping value to eliminate the destabilising force
on the entire speed range is z ¼ 0:018 for the 2.6 MW motor, and z ¼ 0:022 for the 4.2MW
motor. To reveal the effect of different parameters on the stability, it is possible to plot so-called
stability charts. Fig. 6 shows, as an example, a stability chart based on the parameters of the
2.6MW motor.

3.6. Response to unbalance

Fig. 7 shows an example of the amplification factor due to the mass unbalance. The parameters
of the system correspond to those of the 2.6 MW motor. The maximum response occurs at speed
ratio Ro ¼ 0:955: This speed, which might be called the critical speed, is 4.5% lower than the
natural bending frequency of the rotor without electromechanical interaction. Further, as can be
seen in Fig. 4a , the unbalance excitation at this speed ratio does not coincide with any of the
dimensionless eigenfrequencies. Actually, the synchronous excitation frequency is between the
eigenfrequencies of the forward whirling and p þ 1 modes. This means that the unbalance
response is a combination of these two modes. In addition, according to Fig. 7, the
electromechanical interaction reduces effectively the unbalance response close to the critical speed.

3.7. Meaning of main model parameters

The most important parameter affecting the eigenfrequencies of the system is a; the ratio
between the electromagnetic stiffness coefficient and the mechanical stiffness. Fig. 8 shows the
eigenfrequencies of the forward whirling mode and the mode p þ 1 with the three different values
of a: The reference point for the other parameters is the rated operation point of the 2.6 MW
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Table 5

Estimated force parameters for the 2.6MW motor

Operation conditions Parameter

os=os;rat U=U rat Ro s a ~cpþ1 ~tpþ1

0.25 0.25 0.44 0.01520 0.1099 0.629 168.1

0.50 0.50 0.90 0.00760 0.1114 0.621 163.0

0.75 0.75 1.35 0.00507 0.1112 0.620 162.3

1.00 1.00 1.80 0.00380 0.1107 0.623 161.7

1.25 1.00 2.25 0.00400 0.0922 0.603 204.6

The presented points are on the upper limit curve of the operation parameters.

U

�m

⇒

Urat

P = Prat

Te = Te,rat s�s = srat�s,rat

�m,rat

Fig. 3. The upper limit curve of main operation parameters as a function of rotational speed. The supply voltage is

denoted by U, the output power by P , the electromagnetic torque by Te; and the parameter values at the rated

operation by subscript rat.

T.P. Holopainen et al. / Journal of Sound and Vibration 284 (2005) 733–755748
machine. The effect of a on the eigenfrequency of the backward whirling mode is similar to the
forward whirling mode without coupling to the electromagnetic modes. This effect can be seen in
Figs. 4 and 5 . The electromagnetic part of a; i.e., ke; determines the electromagnetic force divided
by the rotor eccentricity without the force reduction effect of the rotor-cage currents. Eq. (4)
shows that the value of ke is determined mainly by the flux density amplitude, the surface area of
the rotor core, and the air-gap length.
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Table 6

Estimated force parameters for the 4.2MW motor

Operation conditions Parameter

os=os;rat U=U rat Ro s a ~cp�1 ~cpþ1 ~tp�1 ~tpþ1

0.25 0.25 0.189 0.01687 0.136 0.141 0.609 266 176

0.50 0.50 0.382 0.00840 0.135 0.131 0.613 249 171

0.75 0.75 0.574 0.00560 0.134 0.127 0.614 243 169

1.00 1.00 0.766 0.00420 0.134 0.126 0.616 240 169

1.25 1.00 0.958 0.00430 0.133 (0.241) 0.520 (460) 237

1.50 1.00 1.149 0.00450 0.097 (0.214) 0.474 (460) 247

The presented points are on the upper limit curve of the operation parameters. The values in parentheses are uncertain

because the simple parametric force model cannot describe the simulated response of cage-current component p � 1:
However, the parameters together describe well the total electromagnetic force.

T.P. Holopainen et al. / Journal of Sound and Vibration 284 (2005) 733–755 749
The coefficients ~cp�1 and ~cpþ1 describe the coupling efficiency between the fundamental field
and cage-current harmonics. Using physical reasoning, it is possible to conclude that ~cp�1X0 and
~cp�1 þ ~cpþ1o1: In our test examples, the sum of these parameters varied between 0.62 and 0.74 in
the rated operation conditions (Table 3). The sum of these parameters determines the reduction of
the electromagnetic force far off from the resonance frequencies roughly following the formula
Fe;0 ¼ keð1� ~cp�1 � ~cpþ1Þ: This can be seen comparing the curves in Fig. 2 and the parameters of
Table 2.
The most important parameters affecting to the damping of the modes are the time constants

~tp�1: The physical background of these parameters lay in the resistances and inductances of the
corresponding harmonic components of the cage currents (see Eqs. (4) and (13)). Fig. 9 shows the
decay constants of the forward whirling and p þ 1 modes with three different values for ~tpþ1: The
reference point for the other parameters is the rated operation point of the 2.6MW machine. It
can be emphasised that the modes in Fig. 9 are coupled, and that the forward whirling and p þ 1
modes are, in a way, interchanged, when the critical speed is crossed. Thus, according to Fig. 9 , it
is advantageous, from the rotordynamic viewpoint, to have a minor constant for the subcritical
motors, and large time constant for the supercritical motors. The effect of ~tp�1 on the damping of
backward whirling mode is minor (see Figs. 4 and 5).
The last electromagnetic parameter g is connected to the slip. It determines the resonance

frequencies together with the supply frequency and the number of pole-pairs. This parameter
appears to have a minor effect on the vibration behaviour on the electromechanical system.
4. Discussion and conclusions

A new simple model was presented to assess the effects of electromechanical interaction on the
rotordynamics of cage induction motors. The model was obtained by combining the Jeffcott rotor
model with a simple electromagnetic force model including two additional variables for the
harmonic currents of the rotor cage. The parameters of this electromechanical rotor model have
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clear physical meaning. The parameter values of a motor can be estimated from the design data,
or from the numerical simulation results, as was done in this study. To generalise the results and
observations, the electromechanical rotor model was transformed into a dimensionless form.
The purely mechanical Jeffcott rotor model includes the forward and backward whirling

modes. The electromagnetic force model increases the total number of modes by two. In principle,
all the modes of the electromechanical rotor model are coupled electromechanical modes.
However, the interaction between the mechanical and electrical system is strong only when the
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rotor rotational speed is close to the first bending critical speed. In that case, the originally
electromagnetic modes may couple with the forward whirling mode.
In conclusion, the electromechanical interaction decreases the natural frequencies of the rotor.

This effect is known as the electromagnetically induced negative spring constant [2,3]. At
subcritical rotational speeds, the mechanical vibration energy of all modes is dissipated via
resistive losses of the cage currents, or transformed into a form of electrical energy. At
supercritical rotational speeds, the effects are qualitatively similar with the exception of one mode,



ARTICLE IN PRESS

0.7 0.8 0.9 1 1.1 1.2
0

5

10

15

20

25

Rω

A
m

pl
ifi

ca
tio

n 
fa

ct
or

ζ=0.02 & emi

ζ=0.04 & emi

ζ=0.02      

ζ=0.04      

Fig. 7. Amplification factor due to the mass unbalance. The amplification factor using two different non-rotating

damping factors are calculated together with electromechanical interaction (emi) or without it. The other parameters

are taken from the 2.6 MW motor: a ¼ 0:111; ~cpþ1 ¼ 0:623; ~tpþ1 ¼ 162:

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Stable

Unstable
0 = ζ 
0.005

0.01

0.02

0.04

Rω

α

Fig. 6. Stability chart for the speed ratio ðRoÞ; force ratio ðaÞ and external damping ðzÞ: The reference point taken from

the parameters of the 2.6 MW motor: ~cpþ1 ¼ 0:623; ~tpþ1 ¼ 162:

T.P. Holopainen et al. / Journal of Sound and Vibration 284 (2005) 733–755752



ARTICLE IN PRESS

0.6 0.8 1.0 1.2 1.4

 −0.01

 0.0 

 0.01

 0.02

 0.03  
100                        

200                        

50 = τp+1

Rω

δ

Fig. 9. Dimensionless decay constants for the forward whirling (up on the right) and the p þ 1 modes (down on the

right) with three different ~tpþ1 coefficients. The parameters of the 2.6 MW two-pole motor are used for the other

parameters: a ¼ 0:111; ~cpþ1 ¼ 0:623; ze ¼ 0; g ¼ 0:00379:

0.8 0.9 1.0 1.1
0.8

0.9

1.0

1.1

0.1 = α
0.2               
0.4               

Rω

ω
 / 

ω
n

Fig. 8. Dimensionless eigenfrequencies for the forward whirling (up on the left) and the p þ 1 modes (down on the

right) with three different a coefficient. The parameters of the 2.6 MW two-pole motor are used for the other

parameters: ~cpþ1 ¼ 0:623; ~tpþ1 ¼ 162; ze ¼ 0; g ¼ 0:00379:

T.P. Holopainen et al. / Journal of Sound and Vibration 284 (2005) 733–755 753
which receives energy from the electrical system. If the mechanical energy dissipation of this mode
is too small, a form of self-excited vibrations may follow leading to the rotordynamic instability.
Because this instability is induced by the periodic variation of the system parameters (Eq. (3)), this
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phenomenon is one form of the parametric instability [16]. Excluding the potential rotordynamic
instability, the numerical results indicate that the electromechanical interaction reduces effectively
the unbalance response close to the first bending critical speed.
In this study, the rotor core was assumed to be rigid and perfectly aligned with the rigid stator

bore. These assumptions enabled the use of the two-dimensional electromagnetic models, and
restricted the rotor model and induced vibrations to be symmetric. Secondly, the homopolar flux
may have remarkable effects on the vibrations of flexible-shaft two-pole motors [3] . However, in
this study, the homopolar flux was ignored in the estimation of electromechanical force
parameters. Thirdly, the presented results are limited to the cage induction motors without
parallel paths in the stator windings. It is assumed that the parallel paths affect the interaction
forces resembling the effects of rotor cage currents by enabling circulatory currents in the stator
winding. Fourthly, only the low-order components of the eccentricity harmonics p � 1 were
included into the parametric force model. The high-order components may induce significant
force components, particularly at higher frequencies.
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